

Changes in the gene expression profile of equine mesenchymal stem cells (MSCs) after their allogeneic administration in horses matched or is mismatched for the major histocompatibility complex (MHC)

Alina Cequier*[†], Elvira Bernad^{*}, Mirta García^{*}, Belén Serrano^{*}, Francisco José Vázquez^{*†}, Antonio Romero^{*†}, Arantza Vitoria^{*†}, Laura Barrachina^{*†}, Clementina Rodellar^{*}

(*) Laboratorio de Genética Bioquímica LAGENBIO – Instituto Agroalimentario de Aragón – IA2 (Universidad de Zaragoza – CITA) – Instituto de Investigación Sanitaria de Aragón (IIS), Zaragoza, Spain

(*) Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain **Contact: alinacs@unizar.es**

INTRODUCTION

- Musculoskeletal injuries have a great impact in equine industry but there are not effective treatments.
- Allogeneic mesenchymal stem cells (MSCs) are a promising therapy but they are not truly immune-privileged, they are immune-evasive.
- Further knowledge on MSC interactions with the horse immune system in vivo is required. These interactions are influenced by:

Donor-receptor MHC-
matching/mismatchingMHC expression
levelMSC immunomodulatory
ability

RESULTS AND DISCUSSION

1. Genes coding for immunomodulatory molecules

Donor-specific + Influenced by external factors			
Inflammation	Differentiation		
	Donor-specific + Influer Inflammation		

Horse is highly relevant both as patient as translational model.

OBJECTIVE

To evaluate the expression of genes related to the immunomodulatory and immunogenic profiles of equine MSCs after their exposure to the immune system of the horse *in vivo*.

METHODS

1. Horse selection according to their MHC haplotype (microsatellite markers).

MSCs donors	MHC-matched allogeneic receptors		MF allog	IC-mismato geneic rece	ched ptors	
D1 MSC-chondro	R1	R2	R3	XI	X2	X3

MSC-Chondro showed the highest immunomodulatory profile. MSC-Primed expressed the lowest levels of immunomodulatory genes.

2. Genes coding for immunogenic markers

2. MSCs obtention and encapsulation in alginate scaffolds in three conditions: basal conditions (MSC-naïve), pro-inflammatory primed (MSC-primed) or differentiated into chondrocytes (MSC-chondro).

3. Placement of the alginate scaffolds and removal after 1, 3 and 6 weeks. Reexposure to the same type of stem cells.

MSC-Chondro showed the **highest** expression levels of the costimulatory molecules *CD40* and *CD80*.

MSC-Primed expressed the highest levels of MHC-II.

3. Effect of MHC compatibility

4. Gene expression analysis of MSCs retrieved from the scaffolds by **RT-qPCR**

MSC-chondro: MHC-compatibility increased their immunomodulatory profile.

MSC-naïve: MHC-incompatibility increased their **immunogenicity**.

T1 = 1 week after 1st administration; T2 = 3 weeks after 1st administration; T3 = 6 weeks after 1st administration; T4 = 1 week after 2nd administration; T5 = 3 weeks after 2nd administration; T6 = 6 weeks after 2nd administration; * = p < 0.05; ** = p < 0.01

CONCLUSIONS

- > The MHC haplotype, the inflammatory exposure and the chondrogenic differentiation of equine MSCs affect their immune profile in vivo.
- MSC-chondro may offer advantages for allogeneic cell therapy, contrary to previous in vitro findings suggesting higher immunogenicity and lower immunomodulatory capacity
- > Understanding the immune response *in vivo* to allogeneic equine MSCs is key for managing this response and design more effective and safer therapies.

